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a b s t r a c t

This paper proposed a new methodology to determine the optimal trajectory of the path for multi-robot
in a clutter environment using hybridization of improved particle swarm optimization (IPSO) with an
improved gravitational search algorithm (IGSA). The proposed approach embedded the social essence of
IPSO with motion mechanism of IGSA. The proposed hybridization IPSO–IGSA maintain the efficient
balance between exploration and exploitation because of adopting co-evolutionary techniques to update
the IGSA acceleration and particle positions with IPSO velocity simultaneously. The objective of the
algorithm is to minimize the maximum path length that corresponds to minimize the arrival time of all
robots to their respective destination in the environment. The robot on the team make independent
decisions, coordinate, and cooperate with each other to determine the next positions from their current
position in the world map using proposed hybrid IPSO–IGSA. Finally the analytical and experimental
results of the multi-robot path planning were compared to those obtained by IPSO–IGSA, IPSO, IGSA in a
similar environment. The Simulation and the Khepera environment result show outperforms of IPSO–
IGSA as compared with IPSO and IGSA with respect to optimize the path length from predefine initial
position to designation position ,energy optimization in the terms of number of turn and arrival time.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The Path planning problem in mobile robotics is considered as
a complex task. It has studied from the paper [8] that work
determines a path for the robot to reach in predefined goal loca-
tion from a specified starting location without hitting with various
obstacles in the given Environment. The path planning problem
has been classified into different categories. One of the classifica-
tions is static and dynamic path planning based on the environ-
mental information. In the static path planning, the obstacles and
goals are motionless. But, in the dynamic path planning the
obstacles and goals are moving in the environment in each time
and also the environment is changing in every time. Another
classification is local and global path planning. Robot navigates
through the obstacles by steps and determines its next position to
reach at the goal by satisfying constraints like path, time and
energy-optimality [1–7] with the help of the local path planning
scheme. In global planning, the robot decides the entire collision
free path before its movement towards the goal from a specified
Das),
initial position. The above mentioned global planning is termed as
offline planning [32]. Local path-planning, which includes naviga-
tion and online planning, sometimes referred to as navigation only
in the literature. The phrase motion planning that includes the
notion of time with the position of a robot on a planned trajectory,
is often used in the context of path-planning. Motion planning
thus takes care of planning the path with some resource man-
agement or constraints over time. In the last decades, Significant
progress has been made on a single robot and multi-robot in
motion planning [11,13,15] by using of some traditional and
heuristic approaches such as potential field method [14], visibility
graph-based, Voronoi-diagram [31], real time A* algorithm
[8,9,19], Simulated Annealing and neural network [10] and evo-
lutionary [16,17] algorithms. But, in the classical approach needs
more time complexity in large problem space and trapping in local
optimum are drawbacks. Therefore, solving these problems using
classical approach is impractical. Hence heuristic algorithms have
become more popular to solve optimization problem. Heuristic
algorithms maintain a good balance between diversification and
intensification to achieve both efficient global and local search.
Therefore, authors have consented on solving multi-robot opti-
mization problem using heuristic algorithms. In a multi-robot path
planning problem, each robot has a specified initial and goal
position in a given environment and each robot have to plan their

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2015.10.011
http://dx.doi.org/10.1016/j.swevo.2015.10.011
http://dx.doi.org/10.1016/j.swevo.2015.10.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.10.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.10.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.10.011&domain=pdf
mailto:daspradipta78@gmail.com
mailto:hsbehera_india@yahoo.com
mailto:bkpanigrahi@ee.iitd.ac.in
http://dx.doi.org/10.1016/j.swevo.2015.10.011


P.K. Das et al. / Swarm and Evolutionary Computation 28 (2016) 14–28 15
collision free path without hitting any of the colleagues or obsta-
cles present in the map through offline or online approach. The
obstacles present in the environment may be static or dynamic.
However, in this paper we have considered static obstacles in the
given environment for the robots and robot is treated as dynamic
obstacles for other robots. The path planning problem for multi-
robot can be solved by two different approaches such as cen-
tralized or distributed approach. The cost or objective function and
the constraints for computing the path for all the robots are con-
sidered together in the centralized approach [16,17]. Whereas, in
the distributed planning [22], each robot determined its collision
free trajectory path towards the goal independently without
making collision with static obstacles or colleagues. The multi-
robot navigational problem has divided into two smaller problems
such as velocity planning and path planning. In the first phase,
each robot constructs the individual path by satisfying the opti-
mum path for each robot. In the velocity planning, each robot
avoids the collision with obstacles and the teammates. In our
study, we have proposed a novel meta-heuristic optimization
approach to carry out the multi-robot navigational problem. Dif-
ferent meta-heuristic optimization algorithms have been used to
generate the optimum trajectory collision free for each robot.

Particle swarm optimization (PSO) with mutation operator [49]
has been used to develop an algorithm for path planning for a
mobile robot. Multi-objective optimization problem has for-
mulated for obstacle avoidance in a dynamic environment and
solved it by PSO [50]. An algorithm for robot path planning has
developed using PSO of Ferguson Splines [51]. A smooth path
planning of a mobile robot has solved using stochastic PSO [52]. In
[21] multi-objective PSO-and NPSO based algorithms for robot
path planning. In [57] PSO is used in an obstacle avoidance sce-
nario in which robots are meant to navigate between static and
dynamic obstacles. In [53–56] Area Extension PSO (AEPSO) and
Cooperative AEPSO (CAEPSO) are employed as navigators of a
swarm of robots in dynamic and static environments. AEPSO and
CAEPSO take advantage from macro scoping modelling of PSO in
addition to extra heuristics that utilize concepts such as reinfor-
cement learning and cooperative learning. Multi-objective particle
swarm optimization (MPSO) has been used to solve the path
planning problem under uncertainty to minimize the path length
and risk degree [20]. In [43] used two multi-objective path plan-
ning models to find a safe path by minimizing the energy con-
sumption. A stochastic path planning scheme has been proposed
[44] for a mobile robot to find safety and smooth path. Multi-
objective PSO with self-adaptive mutation operation has been
proposed [45] to solve the path planning problem in an environ-
ment with obstacles and danger source. A PSO used endocrine
regulation mechanism [46] to update the particle behaviors by the
interaction of neural and endocrine systems and reduced the local
convergence with help of momentum factor has been utilized to
plan a robot path. Binary PSO [47] has been proposed to find the
global optimal path and a path is encoded with some vertices of
the polygon type's obstacle present in the environment. Similarly,
a PSO has embedded with potential field's approach [48] to update
particles and avoid the obstacles with the help of potential field
method. Gravitational search algorithm (GSA) and on a particle
swarm optimization (PSO) algorithm applied to multiple mobile
robot on holonomic wheeled platforms [58]. Dijkstra algorithm
and bat algorithm [68] has been proposed to find the global
optimal path. Cuckoo search (CS) algorithm has been applied for
mobile robot path planning in an unknown or partially known
environment with variety of static obstacles [69]. The different
intelligent algorithm had also been used to solve robot path
planning such as memetic algorithm [63,70], culture algorithms
[64], biogeography particle swarm optimization algorithm (BPSO)
[65]. Glowworm Swarm Optimisation (GSO) [66] has been used to
solve multiple source localisation tasks through real robot
experiments and GSO [67] has also been used for pursuing mul-
tiple mobile targets using single and two source cases. Firefly
algorithm (FA) [71] has been proposed for solving the path plan-
ning problem by improving the solution quality and convergence
speed. Multi-robot path planning problem is well known for
optimisation problem, recently, so many swarm intelligence
algorithms have been proposed to solve multi-constrained pro-
blem such as grey wolf optimizer (GWO) [72], chicken swarm
optimisation (CSO) [73], krill herd (KH) [74], monarch butterfly
algorithm (MBA) [75]. These algorithms are inspired by swarm
behaviour of grey wolves, chicken, krill, and butterfly, respectively.
Gravitational search algorithm (GSA) based approach has been
applied for generating an optimal path for a robot travelling in
partially unknown environments in the presence of multiple
(static or dynamic) obstacles [30]. Path planning of Uninhabited
Aerial Vehicle has been solved using improved GSA [59]. Differ-
ential Evolution (DE) [17] has used for multi-robot navigation in a
static environment and performance of the algorithm has used for
minimizing the path length. Hybridization of meta-heuristic
algorithms such as ACO-GA [32], PSO–GSA [33], and Hybrid Evo-
lutionary Algorithm Based on Tree Structure Encoding [34] has
been solved for multi-robot path planning. However, we have
hybridized improved PSO (IPSO) and IGSA for better performance
with respect to IPSO [24,27] and IGSA.

However, PSO suffers from premature convergence in the
evolutionary process while dealing with complex problems such
as some real world navigation based optimization problem like the
solution of path planning in multi-robot. PSO also depends on
users to tune control parameters such as inertia weight, social and
cognitive coefficients and velocity clamping in order to achieve the
required solution. For instance, as iteration increase the initial
weight in PSO is mostly decreasing linearly from 0.9 to 0.4 in order
to emphasize on the exploitation. However, there is no mechanism
for significant hasty movements in the search space for PSO and
this makes the poor performance of PSO [61]. Therefore, the
structure of PSO algorithm needs further improvement for
achieving an optimal solution to the real world problems. GSA is
one of the meta-heuristic algorithms, which is based on the law of
gravity and mass interaction, and implements law of motion and
Newtonian gravity. The advantages of GSA are (1) easy to imple-
ment with higher computational efficiency; (2) few parameters to
adjust, but the disadvantages of this algorithm as follow (1) if
premature convergence occurs, there will not be any recovery for
this algorithm; (2) the algorithm loses its ability to explore and
then becomes inactive only after becoming convergence [62]. Due
to the above difficulties in GSA, further improvements are required
for the optimal solution to the complex problem. The main idea of
hybridizing of improved PSO and GSA to integrate the ability of
exploitation in PSO and exploration in GSA to produce both algo-
rithms' strength [60]. Therefore, authors motivated to hybrid the
improved PSO and GSA for maintaining a good balance between
diversification and intensification to achieve global optima.

The above proposed work has been focused on the minimizing
the path length of the mobile robot and not considered the path
deviation and energy consumption as a key factor. In this work, we
have focused on the minimizing the path cost, path deviation and
energy consumption for each robot with the help of the proposed
algorithm. This paper contributes to establish a novel optimization
algorithm by a hybrid of IPSO and IGSA. The main idea of this
hybridization is to embed the social and cognitive behavior of IPSO
with the Newtonian gravity concept of IGSA by co-evolutionary
techniques. Then, this novel hybrid improved particle swarm
optimization and improved gravitational search algorithm (IPSO–
IGSA) is proposed to solve the multi-robot path planning in a
cluster environment, where some of the obstacles are static and
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some of the obstacles are dynamic in nature. This proposed
approach effectively improved the exploration and exploitation in
IPSO–IGAS because of simultaneously updating the particle posi-
tions with IPSO velocity and IGSA acceleration.

The main objective of this paper may be summarized as fol-
lows: (i) we study the problem of multi-robot path planning in a
clutter environment and formulated the above problem as multi-
objective optimization problem with constraints; (ii) novel
method to the solution of optimal trajectory path generation for
multi-robot path planning problem using IPSO–IGSA is proposed
in this article; (iii) the proposed algorithm has been applied for
multi-robot path planning in a clutter and dynamic environment
and obtained results are compared to other optimization algo-
rithms like IPSO, IGSA; (iv) the performance of the proposed IPSO–
IGAS, as an optimizing tool in solving multi-robot path planning
problem, is applied in the simulation as well as Khepera-II envir-
onment and result are presented; (v) the performance matrix of
the proposed approach is successfully validated in simulation and
Khepera-II.

For realizing multi-robot path planning problem with hybridi-
zation of IPSO–IGSA [25], a fitness function is constructed for the
IPSO to compute the next positions for each robot to produce the
optimal trajectory path leading towards their respective goals by
updating the particle position with IPSO velocity and IGSA accel-
eration. The fitness function of the IPSO represents two compo-
nents. First, selection of the next position of the robot in the
optimal path of the objective function and the second one is
representing the constraint to avoid collision with teammates and
static obstacles. In this paper, we enhance our implementation of
the hybrid IPSO–IGSA technique, to compute the optimal trajec-
tory path of all the robots from specified initial positions to fixed
goal positions in the environment and with an objective to mini-
mize the path distance for each robot. The result shows that the
algorithm can improve the solution quality in a reasonable amount
of time and a successful optimal path is designed with the help of
hybrid IPSO–IGSA technique by avoiding the dynamic as well as
static obstacles in its path towards the goal.

The remaining part of the paper is outlined as follows. The
classical particle swarm optimization and improved particle
swarm optimization are described briefly in the Section 2. The
proposed improved gravitational search algorithm is presented in
the Section 3. Theoretical description and its algorithm of the
hybrid IPSO–IGSA for path planning of multi-robot is presented in
Section 4. Formulation of the problem for multi-robot path plan-
ning is elaborated in Section 5. Implementation of multi-robot
path planning problem using hybrid IPSO–IGSA Algorithm is
described in detail in Section 6. The simulation result of the
implementation is presented in Section 7. In Section 8 experiment
is conducted in Khepera-II environment and finally, conclusions of
the work in the paper are presented in Section 9.
2. Particle swarm optimization (PSO)

2.1. Classical PSO (CPSO)

The CPSO is a stochastic population based, bio-inspired evolu-
tionary optimization algorithm, which was originally introduced
by Kennedy and Eberhart (1995), which utilizes swarm intelli-
gence to achieve the goal of optimization. It is based on intelligent
collective behavior of schools fish or bird flocks. In the classical
PSO algorithm, each member of the population is known as a
particle in a D-dimensional search and set of particles is called a
swarm. The velocity parameter of the CPSO is dynamically updated
by the particles own experience and flying experience of its
accompaniment. The members of the entire population share the
information among individual to change each particle position to
find the best position in the search space. The advantage of the
CPSO over other optimization algorithm is easy to implement and
few parameters are to be adjusted.

Let N be the population size. In each generation k, the velocity
and position of the particles are updated using Eq. (1).

Vd
i ðtþ1Þ ¼ Vd

i ðtÞþC1: ϕ1: xdpbesti �xdi ðtÞ
� �

þC2:ϕ2: xdgbest�xdi ðtÞ
� �

xdi ðtþ1Þ ¼ xdi ðtÞþVd
i ðtþ1Þ ð1Þ

where xi ¼ ðxi1; xi2; ::::::xiDÞ represent the current position vector
of the particle ið1r irNÞ in a D-dimensional search space, Vi ¼
ðVi1;Vi2; ::::::ViDÞ represent the velocity of the ith particle,
C1(C1a0Þ and C2(C2a0Þ are the acceleration constants, ϕ1 and ϕ2
are two random numbers in the range [0, 1]. xpbest is the previous
best position of the ith particle in generation k, xgbest is the pre-
vious global best position among all the particles in generation k .
If C1 ¼ 0, then PSO algorithm is converted to social-only model.
Similarly, if C2 ¼ 0, then it becomes a cognition-only model.

2.2. Improved particle swarm optimization

To bring a balance between the exploration and exploitation
characteristics of PSO, Shi and Eberhated proposed a PSO on
inertia weight in which velocity of each particle is updated and
claimed that a larger the value of the inertia weight will be pro-
vided a global search, while smaller the value will be provided
local search. So, it needs to change the inertia weight dynamically
to adjust the search capability dynamically. Therefore, there are
several proposals to modify the PSO algorithm by changing the
inertia weight value in an adaptive manner in each iteration. In
this paper, we have improved PSO (IPSO) in the terms of adaptive
weight adjustment and acceleration coefficients to increase the
convergence rate to optimum value in PSO, the classical PSO
equation modified according to the following form:

Vd
i ðtþ1Þ ¼ wiV

d
i ðtÞþC1: ϕ1:ðxdpbesti �xdi ðtÞÞþC2:ϕ2:ðxdgbest�xdi ðtÞÞ

xdi ðtþ1Þ ¼ xdi ðtÞþVd
i ðtþ1Þ ð2Þ

The local best value in IPSO can be computed as

pbestiðtþ1Þ ¼
pbestiðtÞ; if Objðxiðtþ1ÞÞgObjðpbestiðtÞÞ
xiðtþ1Þ; if Objðxiðtþ1ÞÞ!ObjðpbestiðtÞÞ

(
ð3Þ

where Obj stands for the fitness function of the moving particles
and the global best position is obtained as

gbestðtÞ ¼ min Objðpbest1ðtÞÞ;Objðpbest2ðtÞÞ; ::::::ObjðpbestNðtÞÞ
� � ð4Þ

The convergence rate of the PSO has been improved by fine
tuning of its parameter with the help of several techniques. These
techniques usually change the PSO update equations without
altering the inherent structure of the algorithm. The velocity
during the previous time step is scale it by a scale factor inertia
weight (w) to update a new velocity every time as the particle
moves the search space. The large value of the inertia weight
provides the global search where as the small value of the inertia
weight makes a local search. The search ability is adjusted dyna-
mically by dynamic change of inertia weight. Here, the adaptive
change of inertial weight proposed in [12] is used and presented in
the Eq. (5). Empirical experiments have been performed in the
past with an inertia weight varies in [0.9, 0.4].

wi ¼wminþðwmax�wminÞ
disti

max _dist
ð5Þ

where disti is the current Euclidean distance of particle i from
global best is defined in Eq. (6) and initial value and final value of
the inertia weight is 0.4 and 0.9 respectively and max_dist is the
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maximum distance of a particle from global best in that generation
as defined in Eq. (7).

disti ¼
XD
d ¼ 1

gbestd�xdi

 !1=2

ð6Þ

max _dist ¼ arg maxðdisti
i

Þ ð7Þ

Similarly, the fixed value set for the acceleration coefficients
(conventionally fixed to 2.0). With the large value of the social
component C2 in comparison with a cognitive component C1 leads
particles to a local optimum prematurely and relatively high value
of cognitive components results to wander the particles around
the search space. The quality of the solution quality is improved by
modifying cognitive and social coefficient term in such a way that
the cognitive component is reduced and social component is
increased as generation proceeds. The modification of the coeffi-
cients are made (for tth generation) using the following Eqs. (8)
and (9).

C1 ¼ C1i�
C1i�C1f

Max_Iter

� �
t ð8Þ

C2 ¼ C2iþ
C2f �C2i

Max_Iter

� �
t ð9Þ

where C1i;C1f ;C2i and C2f are initial and final values of cognitive
and social component acceleration factors respectively and
Max_Iter is the maximum number of allowable iterations.

The accelerating and inertial weights are the major factor in the
numerical results [12,23] to improve the accuracy. The algorithm
ability has improved by combining PSO with other search tech-
niques [26]. To escape from local minima and increase the diver-
sity of population, PSO combine with some evolutionary operators
[28,29,35] such as crossover, mutation and selection. Hence, to
improve the performance of PSO, other evolutionary algorithm
such as GSA is used in this paper.
3. Improved gravitational search algorithm (GSA)

Recently the scientific community has gained the interest on
GSA. It is a meta-heuristic optimization algorithm inspired by
nature which is based on the Newton’s law of gravity and the law
of motion [39]. GSA is grouped under the population based
approach and is reported to be more natural. The algorithm is
planned to improve the performance in the exploration and
manipulation capabilities of a population based algorithm, based
on gravity rules.

GSA is based on the two important formulas about Newton
Gravity Laws given by Eqs. (10) and (11). Eq. (10) is the gravita-
tional force equation between the two particles, which is directly
proportional to their masses and inversely proportional to the
square of the distance between them. But in GSA instead of the
square of the distance, only the distance is used. Eq. 11 is the
equation of acceleration of a particle when a force is applied to it
[39].

F ¼ G
M1M2

R2 ð10Þ

a¼ F
M

ð11Þ

G is the gravitational constant, M1 and M2 are masses and R is
the distance between two masses, F is the gravitational force, and
a is the acceleration. Based on these formulas, the heavier object
with more gravity force attracts the other objects as it is seen in
Fig. 1.
In GSA, each mass (agent) has four characteristics, namely
position, inertial mass, active gravitational mass, and passive
gravitational mass. The position of the mass corresponds to a
solution of the problem, and the fitness function are used to
determine the gravitational and inertial masses [40,41].

3.1. Agents initialization

Consider a system with N masses in which position of the ith
mass is defined as follows:

Xi ¼ x1i ;…; xdi ;…; xni
� �

for i¼ 1;2;…;N ð12Þ

where xdi is the position of ith mass in dth dimension and n is
dimension of the search space.

3.2. Fitness and best fitness computation

worst(t) and best(t) are defined as follows for minimization
case:

worst tð Þ ¼ maxiAp f iti tð Þ; p¼ 1; 2;…; N ð13Þ

best tð Þ ¼maxiAp f iti tð Þ; p¼ 1; 2;…; N ð14Þ

3.3. Gravitational constant (G) computation

Gravitational constant G is computed at iteration [8].

GðtÞ ¼ Goeð�αt=TÞ ð15Þ
Here, T is the maximum iteration, t is the current iteration and
αg0 is the weight factor, computed as follows:

α¼ αmax�
αmax�αmin

T
� t ð16Þ

3.4. Masses of the agents’ calculation

Each agent’s mass is calculated after computing current popu-
lation’s fitness as

Mpi ¼Mai ¼Mii ¼Mi; i¼ 1;2;…;N

Here, Mpi and Mai are the active and passive gravitational masses
respectively, while Mii is the inertia of mass for ith agent.

mi tð Þ ¼
f iti tð Þ�worst tð Þ
best tð Þ�worst tð Þ ð17Þ

Mi tð Þ ¼
mi tð ÞPN

j ¼ 1 mj tð Þ
ð18Þ

where MiðtÞ and fiti(t) represent the mass and the fitness value of
the agent i at iteration t, respectively.
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3.5. Velocity and positions of agents

The velocity and position of the agents are updated as

Vd
i ðtþ1Þ ¼ β viðtÞþadi ðtÞ ð19Þ

xdi ðtþ1Þ ¼ xiðtÞþVd
i ðtþ1Þ ð20Þ

Here β is the random number, 0rβr1 and an acceleration of the
ith agents at iteration‘t’ is computed as

adi ðtÞ ¼ Fdi ðtÞ=MiðtÞ ð21Þ
Fdi ðtÞ is the total force acting on ith agent calculated as

Fdi ðtÞ ¼
X

jAkbest ;ja i

βFdijðtÞ ð22Þ

Kbest is the set of first K agents with the best fitness value and
biggest mass, which is a function of time, initialized to k0 at the
beginning and decreasing with time. Here k0 is set to N (total
number of agents) and is decreased linearly to 1.

FdijðtÞ is computed using the following equation:

FdijðtÞ ¼ GðtÞ: MpiðtÞ �
MajðtÞ
disijðtÞ

þε
� �

: Xd
j ðtÞ�Xd

i ðtÞ
� �

ð23Þ

Here xi and Xj are the position vector of the ith and jth agent in dth
dimension, FdijðtÞ is the force acting on agent i from agent j at dth
dimension and ith iteration. disijðtÞ is the Euclidian distance
between two agents i and j at iteration t. G(t) is the computed
gravitational constant at the same iteration while ε is a small
constant. MpiðtÞ is the passive gravitational mass of the agent i at
the instance t. MajðtÞ is the active gravitational mass of the agent j
at time t, these masses are calculated according to [20–23].
4. Novel hybrid particle swarm optimization and gravitational
search algorithm (IPSO–IGSA)

The characteristics of all the population based meta-heuristic
algorithms such as PSO and GSA are maintaining compromise
between exploitation and exploration in order to solve the opti-
mization problems. In PSO, pbest and gbestprovides the exploration
and exploitation. But, in GSA, the exploration can be guaranteed by
choosing of the suitable value of the parameters such as Go and
alpha and exploitation can be guaranteed only by reducing the
participant agents. However, the PSO have ability for exploring in
the multidimensional space, but GSA has its local exploitation
capability.

There different ways of hybridization of PSO and GSA, one way
of hybridization is serial mode i.e output of PSO/GSA as input to
GSA/PSO. However, the result of the hybridization depends on the
winning result of PSO and GSA. No such good result is generated in
our work. Thus, another of hybridize PSO and GSA is consider
based on the principle of any particle in the swarm as a particle
introduced by PSO and/or GSA by means of applying co-
evolutionary technique. Each particle in the hybridization pro-
cess updates its position with the contributions of both PSO
velocity and GSA acceleration. This hybrid algorithm called IPSO–
GSA, proposed by employing cooperative behaviors of the particles
affected by both GSA acceleration and PSO velocity to improve the
performance and convergence of the algorithm. Thus, the velocity
updating formulation in IPSO–GSA consists of cooperative con-
tribution of PSO velocity and GSA acceleration.

Vd
i ðtþ1ÞPSO ¼ wVd

i þC1: ϕ1:ðxdpbesti �xdi ðtÞÞþC2:ϕ2:ðxdgbest�xdi ðtÞÞ

xdi ðtþ1ÞPSO ¼ xdi ðtþ1ÞþVd
i ðtþ1Þ ð24Þ
Vd
i ðtþ1ÞGSA ¼ β Vd

i ðtÞþadi ðtÞ ð25Þ
where Eq. (24) is PSO velocity formulation is obtained from Eq. (2)
and Eq. (25) is the GSA velocity formulation is obtained from
Eq. (19)

Vd
i ðtþ1ÞHPSO�GSA ¼ C3ϕ3V

d
i ðtþ1ÞPSOþC4: ð1�ϕ3Þ:vdi ðtþ1ÞGSA ð26Þ

xdi ðtþ1Þ ¼ xdi ðtÞþVd
i ðtþ1ÞHPSO�GSA ð27Þ

where Eq. (26) is the IPSO–IGSA velocity formulation, which is
formulated and updated using PSO velocity and GSA acceleration. In
the IPSO–IGSA velocity equation, C3 and C4 are two acceleration
coefficients that are used to adjust the PSO velocity and GSA
acceleration on IPSO–IGSA. When C3 or C4 is set to zero, IPSO–IGSA
becomes independently IPSO or IGSA and when C3 and C4 are set to
one, IPSO–IGSA is stochastically influenced by half of IPSO and IGSA.
ϕ3 is a random variable generated within [0,1] which is determined
the stochastic effect of the IPSO velocity and IGSA acceleration on
the IPSO–IGSA velocity updating equation. Eq. (27) is used to update
the position of particles in each iteration. In this hybridization
process, IPSO uses a memory to save the best solution found so far,
while IGSA uses the fitness value to adjust the accelerations. All the
particles move very slowly when they are nearer to the good
solution and gbest helps them to exploit the global best. Each par-
ticles observed the best solution (pbest and gbest) and moves
towards it. Due to the above cause the hybridization of IPSO and
IGSA is powerful to solve the optimization problem [42].

Procedure IPSO–IGSA (xcurr_i; ycurr_i, pvector)
Begin
Initialization: set of parameters wmin;wmax;C1i;C2i;C1f ;C2f ;C3;

C4;G0;αmax;αmin , Max_Iter, N
X-i ¼ ðxcurr_i; ycurr_iÞ
Initialize particle with random positions, velocity and pbest
Evaluate fitness value of the initial particles
Evaluate gbest
For k¼1 to Max_Iter
Begin

Compute α using Eq. (16)
Calculate the gravitational constant GðtÞ using Eq. (15)
Compute the worst(t) and best(t) using Eqs. (13) and (14)
respectively

For i¼1 to N

Calculate Mi(t) using Eq. (18)
Compute disti using Eq. (6)
Compute wi using Eq. (5)
Compute C1 and C2 using Eqs. (8) and (9) respectively

End For
For i¼1 to N
For d¼1 to Number_of_dimension

Calculate the acceleration ai
d(t) using Eq. (21)

Update the velocity Vi
d(t) and position xi

d(t) using Eqs. (26)
and (27)

End For
End For
For i¼1 to N

Evaluate the fitness value fiti(t) of each particle
End For

Update Pbest(t) and gbest(t)
End For
Update:

xcurr_ii ¼ xjcurr_iþVi cos θi

ycurr_ii ¼ yj
curr_iþVi sin θi

return

End
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5. Problem formulation for multi-robot navigation

The multirobot navigation problem is formulated as to compute
the next location for each robot from their current location in the
environment by avoiding the collision with teammates(which is
dynamic in nature) and obstacles (which are static in nature) in its
path to reach at the goal. The set of principles is considered in
formulating multi-robot path planning problem with the help of
the following assumption.

5.1. Assumptions
Fig. 3. Selection of next position (xinext ,ynexti ) from current position (xcurri ,yicurr) for
avoiding collision with obstacle.
1. Current position/initial position and goal position/target posi-
tion of all the robot is known in prior coordinate system.

2. At any instant of time, the Robot can decide any action from a
set of predefine actions for its motion.

3. Each robot is performing its action till reached in their respec-
tive target position in steps.

The following principles have been taken care for satisfying the
given assumptions.

1. For determining the next position from its current position, the
robot tries to align its heading direction towards the goal position.

2. The alignment may cause a collision with the robots/obstacles
(which are static in nature) in the environment. Hence, the robot
turns its heading direction with a certain angle either to left or
right for determining its next position from its current position.

3. If a robot can align itself with a goal without collision, then, it
will move to that determine the position.

4. If the heading direction is rotated to the left or right then it is
required for the robot to rotate the same angle about its z-axis,
if it is same for more than one, and then decide randomly.

Consider the initial position of the ith robot at time t is
(xicurr ,yicurr), the next position of the same robot at time (tþΔt) is
(xinext ,ynexti ), vcurri is the velocity of the robot Ri and (xgoali ,ygoali ) is the
target or goal position of the robot .

So, the expression for the next position (xinext ,ynexti ) can be
derived from the Fig. 2 as follows:

xnexti ¼ xcurri þvcurri cos θiΔt ð28Þ

ynexti ¼ ycurri þvcurri sin θiΔt ð29Þ
When Δt¼1, the Eqs. (28) and (29) is reduced to

xnexti ¼ xcurri þvcurri cos θi ð30Þ

ynexti ¼ ycurri þvcurri sin θi ð31Þ
Consider initially, the robot Ri is placed in the location at

(xicurr ,yicurr). We want to find the next location of the robot
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Fig. 2. Representation of next location from current location for ith robot.
(xinext ,ynexti ) joining of the two points between {(xicurr ,yicurr),
(xinext ,ynexti )} and {(xinext ,ynexti ), (xgoali ,ygoali )} should not touch the
obstacle in the world map is represented in Fig. 3 and minimizes
the total path length from current position to a goal position
without touching the obstacle by forming constraint. Then objec-
tive function F1 that determines the trajectory path length for n
number of robots,

F1 ¼
Xn
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx curr

i � x next
i Þ2þðy curr

i �y0 nexti Þ2Þ
q	

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx next

i � x goal
i Þ2þðy next

i �y goal
i Þ2Þ

q 

ð32Þ

By putting the value xinext and ynexti from expressions (30) and
(31) into expression (32), we obtain

F1 ¼
Xn
i ¼ 1

vcurri þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxcurri þvcurri cos θi�xgoali Þ2

þðycurri þvcurri sin θi�ygoali Þ2

vuuut
8><
>:

9>=
>; ð33Þ

The second objective function is considered as a repulsive
function. The repulsive function is defined as a function of the
relative distance between the robot and obstacles. Let dmin(Xp) is
the minimum distance of Xp from the obstacles. So the repulsive
field for each static obstacle is defined in expression (34).

F2ðXpÞ ¼
k
γ

1
dminðXpÞ� 1

η0

� �
; if dminðXpÞrη0

0 ; otherwise

8<
: ð34Þ

where η0 is the influence range of the obstacle, k is positive con-
stant and γZ2 shapes the radial profile of potential. The third
function is considered on the basis of prediction of the dynamic
object in the world map, which will appear dynamically in the
trajectory path of robots. So, the robot has to predict the dynamic
obstacle position before deciding its next position for a moment.
The objective function including the prediction principle is
expressed as

F3 ¼
Xn
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp�xgoali Þ2þðyp�ygoali Þ2

q
ð35Þ

Again, smoothness of the path is considered using fourth
objective functions. The smoothness is expressed as the angle
between two hypothetical lines connecting the goal point and two
successive positions of the robot’s in each iteration, i.e. gbesti and
gbesti�1 in ith iteration. The objective function for the smoothness
of the path is expressed in mathematically as

F4 ¼
cos �1

ðxcurri �xgoali Þ:ðxgbest i� 1 �xgoali Þ
þðycurri �ygoali Þ:ðygbest i� 1 �ygoali

2
4

3
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxcurri �xgoali Þ2þðycurri �ygoali Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxgbest i� 1 �xgoali Þ2þðygbest i� 1 �ygoali Þ2

q
ð36Þ
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Now, the multirobot navigation problem can be represented as
an optimization problem. The optimization problem contains an
objective function that minimizes the Euclidean distance between
the current location of each robot with their respective goal
location and constraint based on avoiding collision with obstacles/
teammates on their path. The constraints have been modeled by
three types of penalty function. The first penalty function is used
to avoid a collision of mobile robots with obstacles or teammates,
whereas the second penalty is used to avoid collision between a
mobile robot and dynamic obstacles and third penalty is con-
sidered for the smoothness of the path. Thus, the overall objective
(or fitness) functions are obtained by the weighted sum of four
objective functions such as

f it ¼ λ1F1þλ2F2þλ3F3þλ4F4 ð37Þ
where λ1, λ2, λ3 and λ4 are the weights of the shortest path, static
obstacles, dynamic obstacles and smoothness of the path respec-
tively. These weights are adjusted in the simulation and Khepera II
robot, with preeminent values found λ1¼0.25, λ2¼0.25, λ3¼0.25
and λ4¼0.25. So, the optimized path is obtained by minimizing
the fitness function in Eq. (37) with the assigned weights of each
criterion.
6. Implementation of multi-robot path planning problem
using hybrid IPSO–IGSA algorithm

Multi-robot path planning algorithm and flow chart is pro-
posed in this section using hybrid IPSO–IGSA. The proposed hybrid
IPSO–IGSA algorithm is used to evaluate the next positions of
every robot by presuming the current positions of robots and
speed as the parameter for optimizing the given multi-objective
function. It determines the optimized path from each state to the
goal state in a dynamic as well as static environment and robot
measures its distance to obstacles with the help of equipped
sensors. The flow chart for multirobot path planning using IPSO–
IGSA is presented in Fig. 4.

The outline of the algorithm for multi-robot path planning is
discussed below.
Start 

Initialize: Start Position,  Goal Position 
and velocity for 'n' number of robots 

Generate Initial population for 
particles(Robot), set the parameters,  
pbest and gbest  

Evaluate the fitness value of the each 
particles based on Fitness function  

Update the pbest and gbest  and w for 
the population using IPSO equation 

Fig. 4. Flow chart of multi-robot
6.1. Pseudo-code for path planning

Input: (xicurr ,yicurr), ( x
goal
i , ygoali ), andvcurri are the initial position,

goal position and velocity for n robots respectively, 1r irn and
εis the threshold value.

Output: Optimal Trajectory of path OTPi is generated for robot
Ri from (xicurr ,yicurr) to (xgoali ,ygoali )

Begin
For i¼1 to n
xcurr_i’xcurri ; ycurr_i’ycurri ;
End for
For each robot i¼ 1 to n
While ðCurr_iaGiÞ //Curr_i ¼ (xicurr ,yicurr),Gi ¼ (xgoali ,ygoali )//
Call IPSO–IGSA (xcurr_i; ycurr_i, pvector);
// pvector is the position vector denotes updated current

position of the i-th robot //
Moveto (xcurr_i; ycurr_i);
End While
End for
End
7. Computer simulation

The path planning problem for multi-robot is carried out in a
simulated environment. The simulation is conducted through
programming in C language on a Pentium microprocessor and
robot is represented with 14 similar soft-bots of circular shape
with different color code. Each robot radius is 6 pixels. Prior to
start of the experiment, the predefine initial location and goal
location for all the robots is assigned. The experiments were
conducted with seven differently shaped obstacles and assigned
same velocities for each robot at the time of the program run;
however, the velocities of each robot are adjusted in different runs
of the same program. The initial configuration of the world map is
our experimental result which is presented in Fig. 4 with seven
obstacles and 12 soft-bots, out of 12 soft-bots Six are circular
shape with different color represents the initial position of each
robot and rest six are in rectangle shape represents the goal
Calculate G in each iteration , M and a 
for each particles 

Update Position and velocity for each 
particles 

N

Y 

Update best and worst for the 
population using IGSA  

Stopping condition 
satisfied?  

Return the best solution 

END 

path planning By IPSO–IGSA.



Fig. 5. Initial environment for 7 obstacles and 6 robots.

Table 1
Description of obstacles present in Fig. 5.

Obstacles Position of obstacles

1 200,120,320,70,240,70,190,90,200,100
2 180,180,190,200,280,200,300,180,180,180
3 350,180,410,200,400,110,380,180,350,180
4 30,150,30,175,100,175,100,150,30,150
5 400,35,410,25,420,35,410,15,400,35
6 150,350,145,400,180,400,160,350,150,350
7 50,20,100,20,100,45,50,20

Fig. 6. Intermediate environment during execution of IPSO–IGSA after 9 steps.

Fig. 7. Intermediate environment during execution of IPSO–EOPs after 17 steps.

Fig. 8. All robots reached in their respective pre-defined goal in 21 steps by IPSO-
EOPs.

Fig. 9. All robots reached in their respective pre-defined goal in 26 steps by IPSO.
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position of each robot within the same color code. The positions of
the obstacles present in Fig. 5 are described in Table 1. Figs. 6 and 7
present movements of the robots in the intermediate stages. The
final stage of world map, where all the robots reached in their
predefine goal respectively is shown in Fig. 8. This figure shows
that the entire robot reached in their goal with 21 steps by IPSO–
IGSA. The trajectory of path for IPSO and IGSA is presented in
Figs. 9 and 10 respectively. All robots reached in their predefine
goal in 26 and 31 steps respectively.

The optimal path generated from the simulation result for
robots number from 1 to 6 is presented in Table 2. This table
represents the initial co-oridnate, goal co-oridnate and sequence
of optimal co-oridinate travelled during trajectory path planning
of the each robot in IPSO–IGSA. This shows that the path deviation
in IPSO–IGSA is less in comparision to other two metaheriustics
algorthm IPSO and IGSA irrespective of the robots. Here, for the
shake of the complexity in simulation, we have consider for SIX
number of robots and SEVEN obstacles. IPSO–IGSA worked for
irrespective numbers of robot and shows that path deviation is



Table 2
Optimal trajectory of path from initial position to goal position for robots 1–6.

Fig. 10. All robots reached in their respective pre-defined goal in 31 steps by IGSA.
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less in comparision to other algorithms. Number of optimal steps
reqiured for different robots, number from 1 to 6 of the simulation
result for different algorithm is presented in Table 3. Table 3 shows
that the number of optimal steps required for IPSO–IGSA is less
Table 3
Number of steps required for robots from 1 to 6 to reach in goal.

Robot
number

No of step required
to goal in IPSO–
IGSA

No of step
required to goal in
IPSO

No of step
required to goal in
IGSA

1 21 24 23
2 21 25 31
3 21 23 27
4 11 14 13
5 21 25 25
6 11 13 15



Fig. 12. Average untraveled trajectory distance vs. no. of stages with fixed obstacles
and variable number of robots.

Fig. 13. Average total trajectory path deviation vs. no. of robots with variable no. of
obstacles and velocity.
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than the other algorithm such as IPSO and IGSA. The total number
of optimal steps required for IPSO–IGSA, IPSO and IGSA is 21, 25
and 31 respectively.

The experiment is conducted using a central version of the
algorithm using the fitness function (37) for deciding the next
position of the robot. In our experiment, the following parameters
are used in the simulation and Khepera II environment:
dimension¼2, No_of_particles (N)¼50, G0 ¼ 10, Max_Iter (T)¼30,
αmin¼0.2, αmax¼0.4, wmin ¼ 0:4;wmax ¼ 0:9,C3¼0.5, C4¼0.5. In
this proposed algorithm, C1 is linearly decreased from C1i ¼ 2:5 to
C1f ¼ 0:5 and C2 is increased linearly from C2i ¼ 0:5 to C2f ¼ 2:5 .
The code is executed 30 times (maximum iteration) and the per-
formance is analyzed based on the best result.

7.1. Average total trajectory path deviation (ATTPD)

Consider the robot Rk is generated a collision free trajectory of
path from specified initial position nSk to a goal position Gk in the
jth number of iterations of the program is TPkj. If TPk1, TPk2,…,TPkj
are the collision free trajectory of paths produced in the jth
number of iterations of the program. The average total trajectory
path navigated (ATTPN) through jth number of iteration for the

robot Rk is expressed as
Pj
r ¼ 1

TPkr=j.The total average trajectory path

deviation for the robot Rkis calculated by taking the difference
between ATTPN and the real shortest path between Sk and Gk. If
TPk� real is the real trajectory path for robot Rk, then the total
average trajectory path deviation is expressed by

ATTPD¼ TPk� real�
Xj
r ¼ 1

TPkr=j ð38Þ

Therefore, for n robots in the environment the average total
trajectory path deviation (ATTPD) is

ATTPD¼
Xn
i ¼ 1

TPk� real�
Xj
r ¼ 1

TPkr=j

 !
ð39Þ

7.2. Average untraveled trajectory target distance (AUTTD)

On a two dimensional workspace, the mathematical expression
for the untraveled trajectory target distance for a given robot k in
terms of specified goal position Gk and current position Ck is
‖Gk�Ck‖, where ‖:‖ denotes Euclidean norm. Similarly, untraveled
trajectory target distance (UTTD)for n number of robots is

UTTD¼ Pn
i ¼ 1

‖Gk�Ck‖. We can calculate the average of UTTDs in the

jth number of iterations as AUTTD¼ Pn
i ¼ 1

‖Gk�Ck‖=j. The average
Fig. 11. Average untraveled trajectory distance vs. no. of stages with variable
velocity and fixed number of obstacles¼7.

Fig. 14. No. of steps required in different algorithm vs. average untraveled trajec-
tory target distance for respective algorithm.
untraveled trajectory target distance (AUTTD) with stages is pre-
sented in Fig. 11. It indicates that AUTTD takes more time to con-
verge with decreasing the velocity and gradually terminated with
iteration. Again, it is noted that larger the velocity of the robot,



Fig. 15. Total number of turns vs. number of robots in three different algorithms.

Fig. 16. Run time of IPSO–IGSA with number of iteration.

Table 4
Simulation result of the three different algorithms in terms of average trajectory
distance and time (s) to reach in goal.

Robot
number

IPSO–IGSA IPSO IGSA

Avg. trajec-
tory dis-
tance
travelled

Time (s) Avg. trajec-
tory dis-
tance
travelled

Time (s) Avg. trajec-
tory dis-
tance
travelled

Time (s)

1 329.665 15.234 359.267 17.432 387.873 24.347
2 308.665 26.782 321.456 29.637 336.479 42.173
3 291.006 45.362 308.665 48.538 321.483 52.467
4 250.787 51.263 289.462 56.378 291.697 66.879
5 293.626 58.234 267.556 62.469 272.463 78.467
6 232.79 61.221 245.662 69.384 248.382 91.832

Table 5
Simulation result in terms of actual distance, average trajectory distance and
standard deviation to reach in goal by IPSO–IGSA.

Benchmark Generated path length

Actual distance Avg. trajectory distance travelled Std. dev

1 Robot 252.239 329.665 0
2 Robots 274.590 308.665 10.5
3 Robots 250 291.006 15.802
4 Robots 130 250.787 28.979
5 Robots 262.345 293.626 25.925
6 Robots 221.655 232.79 33.065
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faster fall-off in the AUTTD. Fig. 12 shows that, with increasing the
number of robots, slower the convergence rate. Slower the con-
vergence causes the delay in fall-off in AUTTD. The performance of
the result has been analyzed by plotting the average total trajec-
tory path deviation (ATTPD) with the number of robots as variable
in Fig 13. This path is generated by three different Evolutionary
algorithms such as IPSO, IGSA, and IPSO–IGSA. Fig.13 shows the
result of ATTPD computation, when the number of robots varies
between 1 and 10. Here, we observed that IPSO–IGSA performs
better than the other two algorithms as ATTPD is smallest for
IPSO–IGSA in comparison to other two algorithms irrespective of
the number of robots. The performance analysis has been per-
formed in terms of AUTTD over the number of steps in Fig. 14. It
provides graphs between AUTTD verse no stages required during
the planning of path using three algorithms with number of
obstacles¼7 and no of robots¼6. It is apparent from Fig.14 that
AUTTD returns the smallest value for IPSO–IGSA irrespective of the
number of planning steps. Now, the performance of the simulation
result is analyzed in the terms of the number turn, by which we
can able to minimize the energy consumption. The number of turn
required for three different algorithm for number of robots¼6 is
demonstrate in Fig. 15. It shows that IPSO–IGSA takes less number
of turn than other two algorithms and energy consumption to
reach in the designation is less than other two algorithms. The
simulation is only presented for six numbers of robots but number
of turn is less for irrespective of the robot in the planning scheme
of the algorithm. Finally, the performance analysis was undertaken
by comparing the running time over the maximum number of
iterations using three algorithms. Finally, the performance analysis
was undertaken by comparing the running time over the number
of iterations using three algorithms. Fig. 16 provides the time
required for robots to reach in their respective goal position by
three different algorithms and it shows that IPSO–IGSA takes less
time for all robots to reach in their destination.

The result of the experiments generated through the proposed
algorithm in the terms of the actual path travelled, average tra-
jectory path travelled and standard deviation is presented in
Table 4. Simulation result of the three different algorithms such as
IPSO–IGSA, IPSO and IGSA in terms of Average trajectory, distance
and time (in second) to reach in goal is presented in Table 5. For
the simplicity of the environment, the experiment is conducted for
Six numbers of robots and it can work on any number of robots. It
shows that the proposed algorithm takes less time in comparison
to the other two algorithms.

The result of the experiments performed are summarized
in Table 6 in the terms of three performance metrics, namely,
(1) total no of steps required to reach in the goal, (2) ATTPT and
(3) ATTPD have been used here to determine the relative merits of
IPSO–IGSA over the other algorithms for different robots. Table 6
confirms that outperforms the remaining two algorithms with
respect to all three metrics for different robots.

7.3. Comparison study

In this subsection, the robustness of the proposed hybrid IPSO–
IGSA algorithm has been verified by comparing with the existing PSO
and GSA [58], hybrid PSO–GSA [30] and a new hybrid Honey Bee
Mating Optimization-Tabu List [76] for multi-robot path planning. The
authors [58] have implemented PSO and GSA algorithm for multi-
robot path planning in Static Environments with Danger Zones. In
their work, they formulated the objective function based on the
maximization of distance between particles and danger source and
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minimization of the distance between initial position and target
position. They added a positive penalty value to the objective function
in order to avoid the collision with the danger source. They investi-
gated only the execution time for each algorithm PSO and GSA by
considering different number of robots and number of iterations to
reach at the goal. Similarly, the authors [30] have implemented hybrid
PSO–GSA as an optimal path planning algorithm for multi-robot in
static environment with danger zones. They formulated two objective
functions and minimized these objective functions using PSO-GSA for
generating collision free trajectory path in terms of minimizing the
path length. They have not performed any analysis on various
important aspects such as (1) The no of turns require for each robot to
reach at the destination; (2) Total trajectory path deviation; (3) path
Table 6
Comparison of number of steps taken, ATTPT and ATTPD of different algorithms for d

No of robots Algorithms (steps taken) ATTPT

IPSO–IGSA IPSO IGSA IPSO–IG

2 12 16 18 15.19
3 15 18 20 14.74
4 17 21 24 16.75
5 19 24 26 16.2
6 21 27 29 17.02

Table 8
Comparison of simulation result of IPSO–IGSA with Ref. [76].

No. of
obstacles

No. of
robots

No. turn No. of steps

Existing pro-
posed algorithm
(HMBO-Tabu
list)

New proposed
algorithm
(IPSO–IGSA)

Existing pro-
posed Algorithm
(HMBO-Tabu list)

New p
algorit
(IPSO–

10 5 No. 10 22 19
20 5 No. 12 24 19
30 5 No. 14 26 21
10 10 No. 12 29 25
20 10 No. 15 31 27
30 10 No. 17 31 27
10 15 No. 14 32 29
20 15 No. 16 33 29
30 15 No. 17 33 29
10 20 No. 15 35 31
20 20 No. 18 35 31
30 20 No. 20 35 31
10 25 No. 17 41 39
20 25 No. 20 41 39
30 25 No. 22 41 39

Table 7
Comparison of simulation result of IPSO–IGSA in terms of no. of turns, execution time,

No. of robots/no. iteration Performance metrics Existing proposed alg

PSO

2/20 No of turns NO
Execution time (s) 370
No of steps NO

2/30 No of turns
Execution time (s) 515
No of steps NO

3/20 No of turns
Execution time (s) 700
No of steps NO

3/30 No of turns
Execution time (s) 1120
No of steps NO
uncovered by each robot in each iteration; (4) Energy utilization to
reach the goal by each robot. The performance of the proposed IPSO–
IGSA algorithm was verified by comparing the result obtained with
those obtained by [58].

The simulation presented in Table 7. Shows that the proposed
hybrid IPSO–IGSA is outperforms than PSO and GSA.

The authors [76] have proposed a hybrid algorithm for team
robot motion planning in a dynamic environment. They have
implemented honey bee mating optimization (HBMO) algorithm
for minimizing robot travelling distance and tabu list technique for
obstacle avoidance. Finally, the outcomes of the simulation result
have been evaluated in the terms of average path deviation (ATPD)
and average uncovered target distance (AUTD). In this paper, the
ifferent no. of robots.

ATTPD

SA IPSO IGSA IPSO–IGSA IPSO IGSA

16.5 18.4 5. 30 6.7 7.7
18.6 20.4 7. 26 9.6 10.6
20.5 22.6 18. 24 20.3 21.9
21.6 24.7 19.72 21.43 23.89
26.7 28.2 20.74 23.2 25.2

ATTPD AUTTD

roposed
hm
IGSA)

Existing pro-
posed algorithm
(HMBO-Tabu
list)

New proposed
algorithm
(IPSO–IGSA)

Existing pro-
posed algorithm
(HMBO-Tabu
list)

New proposed
algorithm
(IPSO–IGSA)

23.87 20.74 38.56 36.89
26.42 23.56 45.5 42.24
28.54 25.47 53.69 51.56
30.05 27.23 88.22 86.12
31.23 28.53 104.1 102.67
31.56 28.89 122.83 120.23
33.87 31.56 201.82 198.45
52.57 51.34 238.15 234.34
73.7 70.42 281.02 286.78

155.54 152.45 461.73 458.76
189.49 187.48 554.84 552.56
228.42 224.67 642.91 640.34
378.29 375.28 1056.33 1054.28
441.76 439.29 1246.47 1244.78
513.48 512.34 1470.84 1468.98

no. of steps with Ref. [58].

orithm [58] New proposed algorithm (IPSO–IGSA)

GSA IPSO IGSA IPSO–IGSA

NO 9 9 8
1410 32.564 38.783 28.735
NO 18 21 14

8 8 6
2000 29.637 42.173 26.782
NO 16 18 12

9 10 8
2300 52.583 56.284 48.749
NO 20 21 17

9 9 7
3300 48.538 52.467 45.365
NO 18 20 15



Fig. 17. The Khepera II robot.

Fig.18. Position of sensors and internal structure of Khepera II.

Fig. 19. Khepera network and its accessories.

Fig. 20. Khepera environment setup for multi-robot path planning.

Fig. 21. Snapshot of Intermediate stage of multi-robot path planning using IPSO–
IGSA in Khepera environment.

Fig. 22. Optimal path representation of different algorithm for mult-robot path
planning in Khepera environment is represented by different color code. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

P.K. Das et al. / Swarm and Evolutionary Computation 28 (2016) 14–2826
authors have not evaluated the energy requirement for each robot,
run time and not presented the simulation result for robot plan-
ning path. The comparison of results obtained from the proposed
algorithm (IPSO–IGSA) with those obtained from HBMO-Tabu list
has been presented in Table 8.

The comparison results presented in Table 8 shows that the
proposed hybrid IPSO–IGSA is outperforms than HBMO-Tabu list [76].
8. Experiment on Khepera II robot

Khepera II is a miniature robot of diameter of 7 cm equipped with
8 in built infrared light sensors, and 2 relatively accurate encoders for
the two motors control is shown in Fig. 17. The sensors are positioned
at fixed angles and have limited range detection capabilities. The sen-
sors are numbered clockwise starting from the leftmost sensor 0 to
sensor 7 and its internal structure is presented in Fig.18. Sensor values
of the robot are measured in a numerical ranging from 0 to 1023. The
value of the sensor is 1023, if the obstacle is approximately 2 cm dis-
tance from the robot and its value is zero, when the obstacle is more
than 5cm from the robot. The robot consists of on board Motorola
68331 25MHz microprocessor with a flash memory size of 512 kB. We
used Khepera as a table-top robot and connected to a workstation
through a wired serial link. The Khepera II network and its accessories
are presented in Fig. 19 for conduct of experiment.
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The initial world map for conducting the experiment in the
Khepera II is presented in Fig. 20 with 8 obstacles of different
shape and predefine initial state and goal is marked on the map,
where different meta heuristic algorithm is applied. Fig. 21 shows
the intermediate moment of the robot in the trajectory path
towards the goal by respective robot using IPSO–IGSA.

Finally, different mata-heuristic algorithm is applied in Khepera
environment and result of the trajectory path is presented
in Fig. 22. IPSO–IGSA is implemented in the Khepera-II environ-
ment with considering two robots and compared with a different
evolutionary computing algorithm is demonstrated in Fig. 21. The
IPSO–IGSA implementation in Khepera-II shows better optimiza-
tion in comparing to the other meta-heuristic algorithm such as
IPSO and IGSA in the terms of the number of turns and path tra-
velled. In the case of IPSO–IGSA, three numbers of turn are
required to reach in the destination where as in the DE and IPSO
required more no of turns. This shows that IPSO–IGSA is per-
forming better than IPSO and IGSA.
9. Conclusion and future works

A hybridization of IPSO–IGSA algorithm was proposed for tra-
jectory path planning of multi-robots in order to find collision free
smoothness optimal path from predefine start position to end
position for each robot in the environment. The results obtained
from the experimental work are in good agreement with proposed
algorithm. The performance of the proposed algorithm is com-
pared with the different meta-heuristic algorithms such as IGSA,
IPSO through the simulation and Khepera-II environment, it is
concluded that the IPSO–GSA technique is best over other algo-
rithms used for navigation of multi-mobile robot. However, in this
paper, both the environment and obstacles are static relative to the
robot; whereas other robots are dynamic for priority robots.
Finally, the simulation results have compared with existing algo-
rithm PSO and GSA, hybrid PSO–GSA and hybrid HMBO-Tabu list.
In the future, work will be carried out using dynamic obstacles
other than robots such as running vehicle, animals and onboard
camera during the multi-robot path planning.
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